skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crocker Ross, Stephanie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When providing bulk power system services, a third-party aggregator could inadvertently cause operational issues at the distribution level. We propose a coordination architecture in which an aggregator and distribution operator coordinate to avoid distribution network constraint violations, while preserving private information. The aggregator controls thermostatic loads to provide frequency regulation, while the distribution operator overrides the aggregator’s control actions when necessary to ensure safe network operation. Using this architecture, we propose two control strategies, which differ in terms of measurement and communication requirements, as well as model complexity and scalability. The first uses an aggregate model and blocking controller, while the second uses individual load models and a mode-count controller. Both outperform a benchmark strategy in terms of tracking accuracy. Furthermore, the second strategy performs better than the first, with only 0.10% average RMS error (compared to 0.70%). The second is also able to maintain safe operation of the distribution network while overriding less than 1% of the aggregator’s control actions (compared to approximately 15% by the first strategy). However, the second strategy has significantly more measurement, communication, and computational requirements, and therefore would be more complex and expensive to implement than the first strategy. 
    more » « less